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ABSTRACT 
Milling process is a multi-dimensional cutting process accompanied by chatter vibrations because of material 

removal discontinuity. Also, chatter phenomenon has a great impact on final milled products quality.  In this 

paper, an adequate criterion derived from mathematical literature is used to predict stability of multi-dimensional 

chatter milling. For that, firstly, the chatter milling system is represented by a system of three Degrees Of Freedom 

(DOF) and its dynamics is modeled by a system of Retarded Differential Equations (RDEs). Afterward, stability 

in Lyapunov sense is computed on the basis of the quasi-polynomial characteristic function in frequency domain. 

Finally, this method is used to predict stability of chatter milling process under different machining conditions 

and the output related to each case is verified by resolving the system of RDEs and visualizing the displacements 

in time domain using Matlab software. 

 

KEYWORDS: multi-dimensional, milling process, behavior, Chatter Vibrations, RDEs, Matlab software. 

I. INTRODUCTION 

Milling is a manufacturing process where material is removed by chip which is affected by vibrations. Chatter is 

one of the three vibration types [1], [2] and consists on remanufacturing of the manufactured surface. Firstly, the 

importance of chatter in vibrations behavior has been demonstrated experimentally by Nicolson [3] then Taylor 

warned industrials about its lower effect on machined piece quality in 1907 [4]. Effectively, based on mechanistic 

method, Tlusty proved the direct impact of chatter on chip thickness [5]. Afterwards, he developed a basic non-

linear system of cutting force in machining chatter [6] which underlies the strong relationship between cutting 

force and chip thickness [7]. Whereas many works have been developed to avoid chatter [8] or to suppress it [9]-

[10] by varying tool spindle speed, for example, others have been conducted to predict it in time [11] and 

frequency [12] domains. Since computing stability via simulation milling process in time domain is time 

consuming, researchers are putting greater focus on predicting stability in frequency domain. The most popular 

criterion used to achieve this target is the tau-decomposition criterion which stability lobes diagram is based on 

[13], [14]. Stability lobes diagram is still used to predict chatter in manufacturing by drilling [15], turning [16] 

and milling [17], [18] systems thanks to its ability to give general overview idea about process stability in constant 

machining conditions by considering only one degree of freedom at a time.  Nevertheless, general milling is a 

multi-dimensional cutting process. Hence the importance of substituting the Tau-decomposition by a suitable 

criterion. Therefore, this works aims to analyze stability in the Lyapunov sense [19] of nonlinear differential 

equations describing chatter dynamical system in multi-dimensional milling process. The second section aims to 

demonstrate the crossing from milling kinematics to cutting forces. So, milling tool is discretized into elemental 

cutting edges where differential cutting forces are modeled, computed and summed. The third consists on 

representing a multi-dimensional chatter milling process by a system of three retarded differential equations 

(RDEs). After that, we prove that the characteristic function associated is a quasi-polynomial whose degree is 

superior to one. Then, looking back on theorems defining stability of RDEs on the basis of the characteristic quasi-

polynomial root finder, some criteria are defined to determine the stability type (stable, asymptotically stable, 

unstable) of milling process. Hence, milling system behavior is determined in frequency domain.  Afterwards, a 

case study of chatter milling process is borrowed from bibliography to apply the developed method of behavior 

prediction and Matlab software is used in computing phase. Finally, the outputs of this method are compared to 

milling simulation outcomes computed in time domain. 
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Annotations: 

Ω Angular velocity   

N rotation frequency 

𝑧 Teeth number 

𝑓𝑧  Feed rate  

ℎ Uncut chip thickness 

𝜃𝑘,𝐿 Instantaneous engagement angle 

𝜅𝑘 Axial immersion angle  

𝑑𝑏𝑘  Elemental uncut chip width  

𝑑𝑆𝑘  Elemental cutting edge length 

𝐾𝑐𝑟 , 𝐾𝑐𝑡, 𝐾𝑐𝑎 Radial, tangential and axial cutting coefficients 

𝐾𝑒𝑟 , 𝐾𝑒𝑡, 𝐾𝑒𝑎 Radial, tangentiel and axial de sharing coefficients 

 

II. MILLING KINEMATICS 

Machining process is assumed to be a series of workpiece/tool interactions where material is removed as chip. 

Particularly, in milling, tool is rotating around his axis with angular velocity Ω and moving, simultaneously, at 

feed rate𝒇𝒛 to remove chip thanks to its 𝑧 teeth indexed by 𝐿 discretized into elemental cutting edges. Indeed, 

milling tool is discretized into 𝑛𝑘 disks of defined thickness 𝑑𝑏𝑘  referenced by 𝑘 where each disk is containing 𝑧 

elemental cutting edges indexed by (𝑘, 𝐿).  

 

Fig. 1 : Discretization of milling tool 

In the middle plane of the 𝑘𝑡ℎelemental disk, we define a 𝑘𝑡ℎ med-plane perpendicular to the tool axis where each 

elemental cutting edge of the (𝑘, 𝐿)𝑡ℎedges (1 ≤ 𝐿 ≤ 𝑧) is located geometrically by an elemental angle 

engagement 𝜃𝑘,𝐿
0  measured from �⃗�  axis of a reference frame tied to the spindle(𝑂, 𝑋 , �⃗� , 𝑍 ) and 𝜅𝑘. 𝜅𝑘 represents 

the axial immersion of the kth disk med-plane. 

Milling kinematics induce to material removal and a new surface forming in each workpiece/tool interaction called 

local swept surface (Error! Reference source not found.). To shift from an interaction to the next, milling tool 

is rotating with an angle Ω ∗ 𝑡 where t is the time factor. Then, at the time  𝑡, the instantaneous angular position 𝜃𝑘,𝐿 

of the (𝑘, 𝐿)𝑡ℎ elemental cutting edge is deducted as: 

𝜃𝑘,𝐿 = 𝜃𝑘,𝐿
0 +Ω ∗ 𝑡 (1)  

In the angular position 𝜃𝑘,𝐿(𝑡), the  (𝑘, 𝐿)𝑡ℎ elemental cutting edge, whose length is noted 𝑑𝑆𝑘 , is applying a 

differential force 𝑑𝐹𝑡𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅
𝑘,𝐿 to remove the infinitesimal chip whose thickness and width are, respectively ℎ𝑘,𝐿 and 

 𝑑𝑏𝑘 . The (𝑘, 𝐿)𝑡ℎ differential force 𝑑𝐹𝑡𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅
𝑘,𝐿 is applied on cutting edge middle and expressed as (2) based on 

linear model of milling force components [20] in a reference system attached to the elemental tooth. 

𝑑𝐹𝑡𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅
𝑘,𝐿 = {

𝑑𝐹𝑡̅̅ ̅̅ ̅
𝑘,𝐿 = 𝐾𝑐𝑡 ∗ ℎ𝑘,𝐿 ∗ 𝑑𝑏𝑘 + 𝐾𝑒𝑡 ∗ 𝑑𝑆𝑘

𝑑𝐹𝑎̅̅ ̅̅ ̅
𝑘,𝐿 = 𝐾𝑐𝑎 ∗ ℎ𝑘,𝐿 ∗ 𝑑𝑏𝑘 +𝐾𝑒𝑎 ∗ 𝑑𝑆𝑘

𝑑𝐹𝑟̅̅ ̅̅
�̅�,𝐿 = 𝐾𝑐𝑟 ∗ ℎ𝑘,𝐿 ∗ 𝑑𝑏𝑘 + 𝐾𝑒𝑟 ∗ 𝑑𝑆𝑘

} 

(2)  
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Fig. 2 : Elemental milling force components 

Computation of linear model milling force depends not only on elemental cutter and chip geometry but also on 

tangential, radial and axial ploughing and shearing coefficients [21] [22] which are representing force applied 

respectively per unit of area or length. 

 

III. CHATTER MODELLING 

In milling, discontinuity of edges engagement on material creates so-called cutting delay r. This phenomenon is 

called chatter and parameter r is defining duration between two successive teeth passage. In case of symmetric 

milling tool, this factor depends on teeth passing frequency N and number z. 

𝑟 =
60

𝑧 ∗ N
 

 

 

Fig. 3: Chip removal in chatter milling 

Figure 1 shows the impact of chatter on instantaneous chip thickness. Indeed,  total chip thickness is the sum of  

dynamic thickness h𝑑 induced by chatter and quasi-static thickness h𝑠𝑡 removed by rigid removal system  [23] 

(3). 

ℎ = ℎ𝑠𝑡 + h𝑑 (3)  

In the context of a discretized milling tool into elemental cutting edges, we note  ℎ𝑘,𝐿 the instantaneous elemental 

chip thickness [23]express thicknesses quasi-static and dynamic elementary, respectively ℎ𝑘,𝐿𝑠𝑡 and ℎ𝑘,𝐿𝑑 as suite: 

ℎ𝑘,𝐿𝑠𝑡 = 𝑠𝑖𝑛 𝜅𝑘 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿 ∗ 𝑓𝑧  

ℎ𝑘,𝐿 = ℎ𝑘,𝐿𝑠𝑡 + 𝑠𝑖𝑛 𝜅𝑘 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿 ∗ [𝛥𝑥
(𝑡) + 𝛥𝑦(𝑡) ∗ 𝑐𝑜𝑡 𝜃𝑘,𝐿 − 𝛥𝑧(𝑡) ∗ 𝑐𝑜𝑡 𝜅𝑘]⏟                                        

ℎ𝑘,𝐿𝑑
(𝑡)
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Elemental dynamic chip thickness ℎ𝑘,𝐿𝑑
(𝑡) is due to the delay in passage of the (k, L) th edge in matter and 

elemental cutting edge position at time t defined by 𝜅𝑘 and 𝜃𝑘,𝐿(𝑡).  Resulting chatter phenomenon has an impact 

on the three-dimensional geometry of the instant chip expressed by the instant terms(𝛥𝑋(𝑡), 𝛥𝑌(𝑡), 𝛥𝑍(𝑡)) : 

∆̅(𝑡) = {
𝛥𝑋(𝑡) = 𝑋(𝑡) − 𝑋(𝑡 − 𝑟)

𝛥𝑌(𝑡) = 𝑌(𝑡) − 𝑌(𝑡 − 𝑟)

𝛥𝑍(𝑡) = 𝑍(𝑡) − 𝑍(𝑡 − 𝑟)
 

 

 

Chatter is a dynamic phenomenon represented by distance between two vibratory displacements, 

respectively 𝑋(𝑡), 𝑌(𝑡)and 𝑍(𝑡), spaced out in time by r delay in the direction of respective reference axes X, Y 

and Z of spindle tool repair (𝛥𝑋(𝑡), 𝛥𝑌(𝑡), 𝛥𝑍(𝑡)). 

We must remind that this section aim is to determine instantaneous global milling force 𝐹𝑋𝑌𝑍̅̅ ̅̅ ̅̅  (𝑡) expression. For 

this purpose, differential milling forces are sorted, so that associated to non-engaged elementary cutting edges 

(zero) are eliminated thanks to the window function 𝑔(𝜃𝑘,𝐿) defined as:  

𝑔(𝜃𝑘,𝐿) = {
1 𝑖𝑓 (𝑘, 𝐿)𝑡ℎ𝑡𝑜𝑜𝑡ℎ 𝑖𝑠 𝑒𝑛𝑔𝑎𝑔𝑒𝑑
0 𝑖𝑓 𝑛𝑜𝑡

 
 

Then, all non-zero differential milling forces are projected on a unique reference frame (milling tool reference 

frame, for example) thanks to �̿�𝑘,𝐿(𝑡) in order to be summed finally. 

𝐹𝑋𝑌𝑍̅̅ ̅̅ ̅̅  (𝑡) = ∑∑𝑑𝐹𝑋𝑌𝑍 ̅̅ ̅̅ ̅̅ ̅̅
𝑘,𝐿
(𝑡)

𝑧

𝐿=1

𝑛𝑘

𝑘=1

=∑∑�̿�𝑘,𝐿(𝑡) ∗ 𝑔(𝜃𝑘,𝐿) ∗ 𝑑𝐹 𝑡𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑘,𝐿(𝑡)

𝑧

𝐿=1

𝑛𝑘

𝑘=1

 
(4)  

Where: 

�̿�𝑘,𝐿(𝑡) = {

sin(𝜅𝑘) ∗ sin(𝜃𝑘,𝐿) −cos (𝜃𝑘,𝐿) sin(𝜃𝑘,𝐿) ∗ cos(𝜅𝑘)

sin(𝜅𝑘) ∗ cos (𝜃𝑘,𝐿) sin(𝜃𝑘,𝐿) −cos (𝜃𝑘,𝐿) ∗ cos(𝜅𝑘)

−cos(𝜃𝑘,𝐿) 0 sin(𝜅𝑘)

} 

(5)  

Finally, the sum obtained by formulas (2)-(5) is expressed as in (6):   

𝐹𝑋𝑌𝑍̅̅ ̅̅ ̅̅  (𝑡) = {

𝑎𝑋
𝑎𝑌
𝑎𝑍
} + [

𝛼𝑋𝑋 𝛼𝑋𝑌 𝛼𝑋𝑍
𝛼𝑌𝑋 𝛼𝑌𝑌 𝛼𝑌𝑍
𝛼𝑍𝑋 𝛼𝑍𝑌 𝛼𝑍𝑍

] {
𝛥𝑋(𝑡)

𝛥𝑌(𝑡)

𝛥𝑍(𝑡)
} 

(6)  

In order to simplify, we set: 

�̅�(𝑡) = {

𝑎𝑋
𝑎𝑌
𝑎𝑍
}  ; �̿�(𝑡) = [

𝛼𝑋𝑋 𝛼𝑋𝑌 𝛼𝑋𝑍
𝛼𝑌𝑋 𝛼𝑌𝑌 𝛼𝑌𝑍
𝛼𝑍𝑋 𝛼𝑍𝑌 𝛼𝑍𝑍

] ; ∆̅(𝑡) = [
𝛥𝑋(𝑡)

𝛥𝑌(𝑡)

𝛥𝑍(𝑡)
] 

 

Where : 

 𝑎𝑋 = ∑ ∑ 𝑔(𝜃𝑘,𝐿) ∗
𝑧
𝐿=1

𝑛𝑘
𝑘=1

[
𝑓𝑧 ∗ (−𝐾𝑐𝑟 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿

2 ∗ 𝑠𝑖𝑛 𝜅𝑘
2 − 𝐾𝑐𝑡

𝑠𝑖𝑛 2𝜃𝑘,𝐿

2
∗ 𝑠𝑖𝑛 𝜅𝑘 − 𝐾𝑐𝑎 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿

2 ∗ 𝑠𝑖𝑛 𝜅𝑘) ∗ 𝑑𝑏𝑘

+(−𝐾𝑒𝑟 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿 ∗ 𝑠𝑖𝑛 𝜅𝑘 − 𝐾𝑒𝑡 ∗ 𝑐𝑜𝑠 𝜃𝑘,𝐿−𝐾𝑒𝑎 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿 ∗ 𝑐𝑜𝑠 𝜅𝑘) ∗ 𝑑𝑆𝑘
] 

 𝑎𝑌 = ∑ ∑ 𝑔(𝜃𝑘,𝐿) ∗
𝑧
𝐿=1

𝑛𝑘
𝑘=1

[
𝑓𝑧 ∗ (−𝐾𝑐𝑟 ∗

𝑠𝑖𝑛 2𝜃𝑘,𝐿

2
∗ 𝑠𝑖𝑛 𝜅𝑘

2 + 𝐾𝑐𝑡 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿
2 ∗ 𝑠𝑖𝑛 𝜅𝑘 −𝐾𝑐𝑎 ∗

𝑠𝑖𝑛 2𝜃𝑘,𝐿

2
∗
𝑠𝑖𝑛 2𝜅𝑘

2
) ∗ 𝑑𝑏𝑘

+(−𝐾𝑒𝑟 ∗ 𝑐𝑜𝑠 𝜃𝑘,𝐿 ∗ 𝑠𝑖𝑛 𝜅𝑘 +𝐾𝑒𝑡 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿−𝐾𝑒𝑎 ∗ 𝑐𝑜𝑠 𝜃𝑘,𝐿 ∗ 𝑐𝑜𝑠 𝜅𝑘) ∗ 𝑑𝑆𝑘
] 

 𝑎𝑍 = ∑ ∑ 𝑔(𝜃𝑘,𝐿) ∗ [
𝑓𝑧 ∗ (−𝐾𝑐𝑟 ∗

𝑠𝑖𝑛 2𝜅𝑘

2
∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿 −𝐾𝑐𝑎 ∗ 𝑠𝑖𝑛 𝜅𝑘

2 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿) ∗ 𝑑𝑏𝑘

+(−𝐾𝑒𝑟 ∗ 𝑐𝑜𝑠 𝜅𝑘 − 𝐾𝑒𝑎 ∗ 𝑠𝑖𝑛 𝜅𝑘) ∗ 𝑑𝑆𝑘
]𝑧

𝐿=1
𝑛𝑘
𝑘=1  

 𝛼𝑋𝑋 = ∑ ∑ 𝑔(𝜃𝑘,𝐿) ∗ 𝑑𝑏𝑘 ∗
𝑧
𝐿=1

𝑛𝑘
𝑘=1

(−𝐾𝑐𝑟 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿
2 ∗ 𝑠𝑖𝑛 𝜅𝑘

2 −𝐾𝑐𝑡
𝑠𝑖𝑛 2𝜃𝑘,𝐿

2
∗ 𝑠𝑖𝑛 𝜅𝑘 −𝐾𝑐𝑎 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿

2 ∗ 𝑠𝑖𝑛 𝜅𝑘) 

 𝛼𝑋𝑌 = ∑ ∑ 𝑔(𝜃𝑘,𝐿) ∗ 𝑑𝑏𝑘 ∗
𝑧
𝐿=1

𝑛𝑘
𝑘=1

(−𝐾𝑐𝑟 ∗
𝑠𝑖𝑛 2𝜃𝑘,𝐿

2
∗ 𝑠𝑖𝑛 𝜅𝑘

2 −𝐾𝑐𝑡 ∗ 𝑐𝑜𝑠 𝜃𝑘,𝐿
2 ∗ 𝑠𝑖𝑛 𝜅𝑘 − 𝐾𝑐𝑎 ∗

𝑠𝑖𝑛 2𝜃𝑘,𝐿

2
∗ 𝑠𝑖𝑛 𝜅𝑘) 
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 𝛼𝑋𝑍 = ∑ ∑ 𝑔(𝜃𝑘,𝐿) ∗ 𝑑𝑏𝑘 ∗
𝑧
𝐿=1

𝑛𝑘
𝑘=1

(𝐾𝑐𝑟 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿
2 ∗

𝑠𝑖𝑛 2𝜅𝑘

2
+𝐾𝑐𝑡

𝑠𝑖𝑛 2𝜃𝑘,𝐿

2
∗ 𝑐𝑜𝑠 𝜅𝑘 + 𝐾𝑐𝑎 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿

2 ∗ 𝑐𝑜𝑠 𝜅𝑘) 

 𝛼𝑌𝑋 = ∑ ∑ 𝑔(𝜃𝑘,𝐿) ∗ 𝑑𝑏𝑘 ∗ (−𝐾𝑐𝑟 ∗
𝑠𝑖𝑛 2𝜃𝑘,𝐿

2
∗ 𝑠𝑖𝑛 𝜅𝑘

2 + 𝐾𝑐𝑡 ∗ 𝑠𝑖𝑛 𝜃𝑘,𝐿
2 ∗𝑧

𝐿=1
𝑛𝑘
𝑘=1

𝑠𝑖𝑛 𝜅𝑘−𝐾𝑐𝑎 ∗
𝑠𝑖𝑛 2𝜃𝑘,𝐿

2
∗
𝑠𝑖𝑛 2𝜅𝑘

2
) 

 𝛼𝑌𝑌 = ∑ ∑ 𝑔(𝜃𝑘,𝐿) ∗ 𝑑𝑏𝑘 ∗ (−𝐾𝑐𝑟 ∗ 𝑐𝑜𝑠 𝜃𝑘,𝐿
2 ∗ 𝑠𝑖𝑛 𝜅𝑘

2 + 𝐾𝑐𝑡 ∗
𝑠𝑖𝑛 2𝜃𝑘,𝐿

2
∗𝑧

𝐿=1
𝑛𝑘
𝑘=1

𝑠𝑖𝑛 𝜅𝑘−𝐾𝑐𝑎 ∗ 𝑐𝑜𝑠 𝜃𝑘,𝐿
2 ∗

𝑠𝑖𝑛 2𝜅𝑘

2
) 

Instantaneous milling force FXYZ̅̅ ̅̅ ̅̅  (t) includes instantaneous cutting force a̅(t) due to rigid body motion of the 

cutting tool and inducing to quasi-static chip thickness removal, besides of instantaneous chatter force α̿(t) ∗ ∆̅(t) 
which depends on chatter vibration displacements and delay, implicitly. Chatter is a vibration type which is due 

to system flexibility. Then, instantaneous chatter milling force α̿(t) ∗ ∆̅(t) is time response of dynamics milling 

system. So, on the basis of Newton's second law applied to the flexible milling system, a system of retarded 

differential equations is developed [24]: 

�̿� [

�̈�(𝑡)

�̈�(𝑡)

�̈�(𝑡)

] + 𝐶̿ [

�̇�(𝑡)

�̇�(𝑡)

�̇�(𝑡)

] + 𝐾 [
𝑋(𝑡)

𝑌(𝑡)

𝑍(𝑡)
] = �̿�(𝑡) ∗ ∆̅(𝑡) 

(7)  

 

Where: 

�̿� = [

𝑀𝑥 0 0
0 𝑀𝑦 0

0 0 𝑀𝑧

] ;  𝐶̿ = [

𝐶𝑥 0 0
0 𝐶𝑦 0

0 0 𝐶𝑧

] ; 𝐾 = [

𝐾𝑥 0 0
0 𝐾𝑦 0

0 0 𝐾𝑧

] 

 

There, vibratory milling dynamics subsystem is built from transfer functions of decoupled system on a modal 

basis. Indeed, chatter milling dynamics is represented by motion equations of three oscillators in which each one 

is vibrating along one of spindle reference frame directions. 

As we can see, factors of directional dynamic coefficients matrix �̿�(𝑡) are periodic at rotation frequency as milling 

tool rotates and engages the same elementary cutting edges in each interaction workpiece/tool. Then, based on 

immersion conditions and number of elemental cutting edges engaged, time varying dynamic coefficients can be 

expanded by their Fourier series components. It is straightforward to approximate the matrix directional 

coefficients by the constant term in the Fourier series. Then the expression (7) becomes: 

�̿� [

�̈�(𝑡)

�̈�(𝑡)

�̈�(𝑡)

] + 𝐶̿ [

�̇�(𝑡)

�̇�(𝑡)

�̇�(𝑡)

] + 𝐾 [
𝑋(𝑡)

𝑌(𝑡)

𝑍(𝑡)
] =

𝛼0̿̿ ̿

2
∗ ∆̅(𝑡) 

(8)  

 

Where: 

𝛼0̿̿ ̿ =
1

𝑇
∫ �̿�(𝑡)𝑑𝑡
𝑇

0

 
 

𝑇 =
1

𝑁
 

 

The constant matrix directional coefficients 𝛼0̿̿ ̿ is time invariant but engagement dependent. So, each 

factor 𝛼𝑖𝑗
0can be expanded as:  

𝛼𝑖𝑗
0 =∑∑

1

𝑇
∫ 𝛼𝑖𝑗𝑑𝑡
𝑇

0

𝑧

𝐿=1

𝑛𝑘

𝑘=1

𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧} 
(9)  

 

IV. BEHAVIOR PREDICTION 

Hale and Lunel [25] have defined five types of stability. On determination of milling process stability, a criterion 

is mandatory.  As we have seen, chatter milling dynamics is modeled by system retarded differential equations 

where coefficients of vibratory displacements and its derivatives are classified into categories of constant and  

space-varying parameters. On the assumption of constant machining conditions and system parameters dynamics, 
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the only coefficients related to kinematic collision between tool and workpiece are matrix 𝛼0̿̿ ̿ coefficients. This is 

why stability analysis is mandatory in each interaction workpiece/tool. Of course, the literature suggests several 

methods to study dynamic systems stability involving delay [19], [26]–[28]]. We note, moreover, approaches 

based on the analysis of characteristic values associated to differential equations system modelling delayed 

process. Hence, Pontryagin method is used to determine asymptotic stability in Lyapunov sense of chatter milling 

process from characteristic function zeros of differential equations system. 

 

1. Stability: types and criteria 

Dynamic system stability can be determined from its related characteristic function zeros based on the following 

theorem [29], [30] : 

Theorem 1. If all roots have negative real parts, then the trivial solution of (8) is asymptotically stable. 

Theorem 2. If at least one root has a positive real part, then the trivial solution of (8) is unstable. 

Theorem 3. If there are simple purely imaginary roots and the remaining roots have negative real parts, then the 

trivial solution of (8) is stable. 

Theorem 4. If there is a multiple root among the purely imaginary roots, then the trivial solution of (8) is unstable. 

From these theorems, characterization of chatter process stability depends on computing and evaluating all 

characteristic function roots. Remember also that chatter characteristic function is an exponential polynomial 

because of Laplace transform of delayed functions. Therefore, stability system evaluation is time consuming. So, 

Quasi-Polynomial Mapping Based Rootfinder (QPmR) is proposed to decrease the amount of computing power 

and rendering time. In a similar way to that of Routh-Hurwitz criterion applied on ordinary differential equations 

systems, QPmR is a function for computation and analysis of spectrum of characteristic quasi-polynomials of both 

retarded and neutral time delay systems [31]–[33]. 

 

2. Stability computing 

A frequency approach is proposed to evaluate stability of system based on analyzing the characteristic function 

of differential equations system modeling chatter system. Therefore, a new delayed differential equations system 

is redefined from the following dimensionless parameters: 

𝜏 =
𝑡

𝑟
; 𝑟 =

1

𝜐
 ; 

λx =
√
Kx

Mx
⁄

2πυ
; λy =

√
Ky

My
⁄

2πυ
; 

λz =
√Kz Mz

⁄

2πυ
 

ζx =
Cx

2√KxMx
; ζy =

Cy

2√KyMy
; 

𝜁𝑧 =
𝐶𝑧

2√𝐾𝑧𝑀𝑧
 

 

 

With 𝜏 dimensionless time parameter,𝜆𝑥 , 𝜆𝑦, 𝜆𝑧 dimensionless frequencies and 𝜁𝑥 , 𝜁𝑦, 𝜁𝑧 damping ratios along the 

tree axes x, y and z, respectively, of Galilean reference frame. 

Thanks to Laplace transform, RDEs system (8) is expressed in frequency domain (10) where 𝑠 is the complex 

number and 𝐼𝑑 the identity matrix. 

𝐼𝑑 𝑠2 + 4𝜋 [

𝜆𝑥𝜁𝑥 0 0
0 𝜆𝑦𝜁𝑦 0

0 0 𝜆𝑧𝜁𝑧

] s + 4π2 [

𝜆𝑥
2 0 0

0 𝜆𝑦
2 0

0 0 𝜆𝑧
2

] + 4𝜋2

[
 
 
 
 
 
 
 𝜆𝑥

2

𝐾𝑥
𝛼𝑥𝑥

0
𝜆𝑦
2

𝐾𝑦
𝛼𝑥𝑦

0
𝜆𝑧
2

𝐾𝑧
𝛼𝑥𝑧

0

𝜆𝑥
2

𝐾𝑥
𝛼𝑦𝑥

0
𝜆𝑦
2

𝐾𝑦
𝛼𝑦𝑥

0
𝜆𝑧
2

𝐾𝑧
𝛼𝑦𝑧

0

𝜆𝑥
2

𝐾𝑥
𝛼𝑧𝑥

0
𝜆𝑦
2

𝐾𝑦
𝛼𝑧𝑦

0
𝜆𝑧
2

𝐾𝑧
𝛼𝑧𝑧

0

]
 
 
 
 
 
 
 

(𝑒−𝑠 − 1) = 0 

(10) 

Characteristic function P(s) of delayed vibratory milling system (8) is defined as: 
P(s)

=

|

|
s2 + 4πλxζxs + 4π

2λx
2+

4π2λx
2αxx

0

Kx
(e−𝑠 − 1)

4π2λx
2αxy

0

Kx
(e−𝑠 − 1)

4π2λx
2αxz

0

Kx
(e−s − 1)

4π2λy
2αyx

0

Ky
(e−s − 1) s2 + 4πλyζys + 4π

2λy
2+

4π2λy
2α𝑦𝑦

0

Ky
(e−s − 1)

4π2λy
2αyz

0

Ky
(e−s − 1)

4π2λz
2αzx

0

Kz
(e−s − 1)

4π2λz
2α𝑧𝑦

0

Kz
(e−s − 1) s2 + 4πλzζzs + 4π

2λz
2 +

4π2λz
2αzz

0

Kz
(e−s − 1)

|

|

 

 

Delayed function is converted to exponential function through Laplace transform. Then, characteristic function 

𝑃(𝑠) is an exponential polynomial where 𝑠6𝑒3 is the principal term.  
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Coefficients of the characteristic quasi-polynomial 𝑃(𝑠) are formulas which call parameters related to structural 

dynamics of milling system besides the coefficients matrix 𝛼0̿̿ ̿ of vibratory displacements. So, characteristic 

function coefficients determination are based on calculating 𝛼0̿̿ ̿ 

components {𝛼𝑖𝑗
0 = ∑ ∑

1

𝑇
∫ 𝛼𝑖𝑗𝑑𝑡
𝑇

0
𝑧
𝐿=1

𝑛𝑘
𝑘=1 |𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧}}. Then, stability of RDEs system (8) in the Lyapunov 

sense can be evaluated on the basis of characteristic function roots. In order to achieve this, we use Matlab 

software to develop an algorithm (Error! Reference source not found.) where we use the function QPmR  [33], 

[34] to compute characteristic quasi-polynomials roots of RDEs systems. Finally, stability milling process is 

determined by applying the above theorems.   

 

 

Fig. 4: Milling process behavior computation 

 

V. APPLICATION 

In the aim of calculating  𝛼0̿̿ ̿ matrix elements, we need data related to cutting process parameters and tool 

geometry. Also, cutting system dynamics will allow us to get a closer look at its stability. For this, we exploit the 

experimental conditions of Li et al. [24] where a helical milling tool having a helical angle of 30°, a diameter of 

10 mm and two flutes is grooving on an AL7075-T6 aluminum alloy part withconstant feed  𝑓𝑧 = 0.05 𝑚𝑚 𝑑𝑒𝑛𝑡⁄ . 

Cutting law parameters and dynamics parameters associated to milling system are defined as: 

 

Cutting law 

conditions 

Radial Tangentiel Axial 

Krc [N/mm2] Kre [N/mm] Ktc [N/mm2] Kte [N/mm] Kac [N/mm2] Kae [N/mm] 

168.0 30.8 796.0 27.7 222 1.5 

Dynamics 

parameters 

Natural frequency [Hz] 𝜔𝑥 = 807 𝜔𝑦 = 777.8 

Damping ratio  𝜁𝑥 = 0.047 𝜁𝑦 = 0.052 

Stifness[𝑁 𝑚⁄ ] 𝐾𝑥 = 1.23 ∗ 10
7 𝐾𝑦 = 0.76 ∗ 10

7 

 

A Two-DOF structural dynamics of milling system is considered. These two degrees of freedom are the 

displacements 𝑋(𝑡) and 𝑌(𝑡)  in the two orthogonal directions, respectively 𝑋  and �⃗�  axes. Finally chatter vibration 

is described by two equations of motion placed in the following matrix form: 

[
�̈�(𝑡)

�̈�(𝑡)
] + 4𝜋 [

𝜁𝑥𝜔𝑥 0
0 𝜁𝑦𝜔𝑦

] [
�̇�(𝑡)

�̇�(𝑡)
] + 4𝜋2 [

𝜔𝑥
2 0

0 𝜔𝑦
2] [
𝑋(𝑡)

𝑌(𝑡)
] = 2𝜋2

[
 
 
 
 
𝜔𝑥

2𝛼𝑥𝑥
0

𝐾𝑥

𝜔𝑥
2𝛼𝑥𝑦

0

𝐾𝑦

𝜔𝑥
2𝛼𝑦𝑥

0

𝐾𝑥

𝜔𝑥
2𝛼𝑦𝑦

0

𝐾𝑦 ]
 
 
 
 

∆̅(𝑡) 

 

 

Under these conditions, we define three configurations for the torque (rotation frequency, cutting depth). For each 

configuration, we examine roots of the associated characteristic function using a computer program written on 

Matlab script. 
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Table 1: Milling process configurations 

Configurations Rotation frequency [𝑡𝑟 𝑚𝑖𝑛⁄ ] Cutting depth [𝑚𝑚] (𝑑𝑏𝑘 ∗ 𝑛𝑘) 

(1) 1800 𝑑𝑏𝑘 = 0.15 𝑚𝑚 ; 𝑛𝑘 = 20 

(2) 5000 𝑑𝑏𝑘 = 0.05 𝑚𝑚 ; 𝑛𝑘 = 33 

(3) 10000 𝑑𝑏𝑘 = 0.1 𝑚𝑚 ; 𝑛𝑘 = 25 

 

VI. RESULTS AND DISCUSSION 

For each of the three configurations mentioned in Error! Reference source not found., we inject tool parameters, 

cutting law coefficients and process parameters associated with in the input of the script. After that, we evaluate 

the Lyapunov stability of the RDEs system (8). Based on roots analysis of quasi-polynomial characteristic 

function, the QPmR function returns an asymptotic stability for configuration (1) and milling process instability 

for configurations (2) and (3). 

In order to evaluate QPmR function outputs, we use dde23 Matlab function to solve the system of DDEs with 

constant delays representing the two degree-of-freedom structural dynamics of milling system. Then, we obtain 

the signals of the regenerative milling system displacements with respect to the three configurations (1), (2), (3) 

on the axes  𝑋  and �⃗� .  
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Fig. 5: Vibratory displacements of the configurations (1), (2), (3) 

 

Error! Reference source not found. proves the nature of milling system stability evaluated through the frequency 

approach. So, output signals of the configuration (1) are periodic at tooth passing and bounded. At the output of 

the configuration (2), we remark that the envelopes of the signals are linear. Nevertheless, at the simulation of the 

configuration (3), we obtain signals with exponential envelopes. In conclusion, the numerical results (extracts 

from the simulation of the regenerative milling) are qualitatively consistent with the analytical prediction 

(evaluation of the characteristic roots). 

 

VII. CONCLUSION 

Stability lobes find its limits in predicting stability of multi-dimensional chatter cutting process. Then, a new 

approach is proposed to determine chatter milling process stability in sense of Lyapunov by looking back to 

theorems of RDEs system stability in frequency domain. For a case study of milling process, three configurations 

of machining conditions are integrated in the inputs of the QPmR Matlab function to determine milling stability 

for each configuration.  Impact of chatter on stability milling system is visualized in time domain by resolving the 

RDEs system thanks to the dde23 Matlab function.  
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